

Course Name: Databases

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Evy Yulianti
Course Structure	Lecture + Lab
Course Credits	4 SKS units
Course Overview	This course discusses the basic concepts of database management
	including the aspect of modeling and design, language and facility,
	implementation and the application of databases.
Course Key Words	Database, Relational Database, SQL, Query Optimization
Learning Outcome	Upon successful completion of this course, the students are
	expected to have the following abilities:
	Design database application correctly by evaluating all
	related requirements;
	Given database queries, both simple and complex, students
	can apply SQL to complete those queries correctly;
	Given a logical database schema, students can decide
	appropriate data types for each field and constraints for
	each table and implement Data Definition Language (DDL)
	and Data Manipulation Language (DML) in a Data Base
	Management Systems (DBMS).
Course Schedule	Week 1. Concept and Architecture of Database System,
	Week 2. Modelling using Entity Relationship,
	Week 3. Relational DB design;
	Week 4. ER/EER to relational mapping,
	Week 5. Relational data model & relational DB constraint,
	Week 6. SQL-DDL Insert/Update/Delete,
	Week 7. SQL Basic & Advanced Query,
	Week 8-14. SQL - Indexing, Trigger and Stored Procedure,
	Functional Dep. and Normalization
Textbooks, References,	Elmasri, et al., Database Systems, 6th Edition, Addison-Wesley,
and Supplementary Materials	2011

(Maximum 3)	
Grading Component	- Midterm Exam: 20%
	- Final Exam: 20%
	- Assignments: 60%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Discrete Mathematics 1

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Ari Saptawijaya
Course Structure	Lecture
Course Credits	3 SKS units
Course Overview	This course discusses various topics on Discrete Mathematics that
	provide theoretical foundations to support advanced study in
	computer science. Applications of each topic in computer science
	are also discussed.
Course Key Words	Propositional logic, First-order predicate logic, Proofs, Sets and
	Functions, Mathematical induction, Sequences, Progressions, the
	Pigeonhole principle, Permutations, Combinations.
Learning Outcome	Upon successful completion of this course, the students are
	expected to have the following abilities:
	Derive rigorous logical proofs given a set of premises using
	the rules of Propositional Logic and first-order predicate
	logic;
	 Perform basic operations of sets (union, intersection, difference, and complement);
	• • • • • • • • • • • • • • • • • • • •
	 Perform the basic operations of functions (inverse, composition);
	Compare the process of mathematical induction and the
	behavior of other types of sequences;
	Apply the pigeonhole principle in solving mathematical
	problems;
	Calculate numbers of possible outcomes of elementary
	combinatorial processes such as permutations and
	combinations.

Course Schedule	Week 1. Propositional logic,
	Week 2. First-order predicate logic,
	Week 3. Proofs,
	Week 4. Sets and Functions,
	Week 5. Mathematical induction,
	Week 6. Sequences,
	Week 7. Progressions,
	Week 8. the Pigeonhole principle,
	Week 9-14. Permutations, Combinations.
Textbooks, References,	Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th
and Supplementary Materials	Ed, McGrawHill, 2012
(Maximum 3)	
Grading Component	- Midterm Exam: 30%
	- Final Exam: 30%
	- Assignments: 40%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Human-Computer Interaction

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Baginda Anggun Nan Cenka
Course Structure	Lecture + Lab
Course Credits	3 SKS units
Course Overview	This course focuses on the interface design concepts for a software. In this course, students are taught how to apply the principles of human-computer interaction in developing an application, and offer a better alternative interaction design. Materials are delivered through active learning methods, such as: small group discussions, project-based learning, and the use of e-learning management system. The scope discussed in this course includes the historical context of human -computer interaction (HCI), interaction design, cognition, techniques in HCI, social aspects of HCI, data collection and analysis, interaction design process, prototyping, and evaluation.
Course Key Words	Introduction to Human -Computer Interaction; Basic principles of
Course recy words	psychology (cognition); Social interaction; Interfaces; Interaction Design Process
Learning Outcome	 Upon successful completion of this course, the students are expected to have the following abilities: Describe the relationship between Interaction Design and Human-Computer Interaction; Explain the basic principles of psychology (cognition); Describe social interactions; Describe the types of interfaces; Describe the Interaction Design process; Carry out data collection; Perform data analysis; Determine the requirements; Evaluate products using the Usability Testing method;

	Make wireframes (mockups) or low-fidelity prototypes.
Course Schedule	Week 1. Introduction to Human -Computer Interaction;
	Week 2. Basic principles of psychology (cognition);
	Week 3. Social interaction; Interfaces; Interaction Design Process;
	Week 4. Data Collection (Data Gathering);
	Week 5. Data analysis;
	Week 6. Defining Requirements;
	Week 7. Prototyping and System Construction;
	Week 8 – 14. System Evaluation.
Textbooks, References,	Sharp, H., Rogers, Y, and Preece, J. Interaction design: Beyond
and Supplementary Materials	human -computer interaction 4th edition. West Sussex, England:
(Maximum 3)	John -Wiley & Sons. 2015.
Grading Component	- Midterm Exam: 25%
	- Assignments/Projects: 75%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Linear Algebra

ares the students to be able to solve problems about and vector spaces. It also discusses the application in computer science. Systems, matrices, determinant, vector spaces all completion of this course, the students are the following abilities: So will be able to apply various methods for solving
pares the students to be able to solve problems about and vector spaces. It also discusses the application in computer science. Systems, matrices, determinant, vector spaces all completion of this course, the students are the following abilities: So will be able to apply various methods for solving
pares the students to be able to solve problems about and vector spaces. It also discusses the application in computer science. Systems, matrices, determinant, vector spaces all completion of this course, the students are the following abilities: So will be able to apply various methods for solving
ind vector spaces. It also discusses the application in computer science. systems, matrices, determinant, vector spaces all completion of this course, the students are the following abilities: s will be able to apply various methods for solving
ind vector spaces. It also discusses the application in computer science. systems, matrices, determinant, vector spaces all completion of this course, the students are the following abilities: s will be able to apply various methods for solving
ind vector spaces. It also discusses the application in computer science. systems, matrices, determinant, vector spaces all completion of this course, the students are the following abilities: s will be able to apply various methods for solving
systems, matrices, determinant, vector spaces al completion of this course, the students are the following abilities: s will be able to apply various methods for solving
systems, matrices, determinant, vector spaces al completion of this course, the students are the following abilities: s will be able to apply various methods for solving
all completion of this course, the students are the following abilities: s will be able to apply various methods for solving
e the following abilities: s will be able to apply various methods for solving
of linear equations and identify and implement the fective method for solving a given system of linear as; s will be able to explain the concept of a general space, determine the basis and dimension of a vector space, and construct subspaces from given natrices; s will be able to Determine the eigenvalues and aces of square matrices, apply eigenvalue osition to diagonalize matrices, construct a basis for g eigenvectors; s will be able to Identify whether a given function for transformation, determine the standard matrix, and nullity of a linear transformation in Euclidean and the eigenvalues and eigenvectors of a linear mation in Euclidean space, interpret geometrically
n n n n n n n f

Course Schedule	Week 1. Linear equation systems,
	Week 2. matrices,
	Week 3. determinant,
	Week 4. vector spaces,
	Week 5. inner product spaces,
	Week 6. Eigen value and Eigen vector, and
	Week 7 – 14. linear transformation.
Textbooks, References,	Anton, Howard; Elementary Linear Algebra; 11 t h Edition, John
and Supplementary Materials	Wiley & Sons. Inc, New York, NY, 2013.
(Maximum 3)	
Grading Component	- Midterm Exam: 25%
	- Final Exam: 25%
	- Assignments: 50%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Operating Systems

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Amril Syalim
Course Structure	Lecture + Lab
Course Credits	4 SKS units
Course Overview	This course discusses the organization, structure and concepts of computer operating systems. The trade-off between the performance and the functionality in designing and implementing an operating system is discussed, with the emphasis on processes management, interprocess communication, memory management, I/O management, file system management, implementation examples (GNU/Linux and MS Windows), and the support provided by operating systems for distributed systems.
Course Key Words	processor, instruction execution, interrupts, memory hierarchy, cache memory and I/O communications
Learning Outcome	 Upon successful completion of this course, the students are expected to have the following abilities: Understand the role of an operating system; Understand how to decompose programs and executions; Understand the main concept of concurrency, its problems, and solutions; Explain the concepts of process management and memory management; Explain the mechanism and the algorithms of CPU scheduling; Understand the idea and the implementation of virtual memory; Understand the features and concepts of file systems and I/O devices; Analyze issues related to performance of an operating system in managing hardwares.

Course Schedule	Week 1. Virtualization & Scripting
	Week 2. Security, Protection, Privacy, & C-language
	Week 3. File System & FUSE
	Week 4. Addressing, Shared Lib, & Pointer
	Week 5. Virtual Memory
	Week 6. Concurrency: Processes & Threads
	Week 7. Synchronization & Deadlock
	Week 8. Scheduling
	Week 9. Storage, Firmware, Bootloader, & Systemd
	Week 10-14. I/O & Programming
Textbooks, References,	A. Silberschatz, Operating systems concepts with Java 7th edition.
and Supplementary Materials	
(Maximum 3)	
Grading Component	Weekly Assignments
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Platform-based Development

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Baginda Anggun Nan Cenka
Course Structure	Lecture + Lab
Course Credits	4 SKS units
Course Overview	This course discusses software development process on various
	platforms. The material studied in this course are related to various
	programming concepts and rules that are applied to a platform.
	Examples of platforms that are relevant today are web and mobile
	devices. Each platform has different characteristics, ranging from
	programming patterns, processing mechanisms, interaction between
	components / API / hardware, and interactions with users which are
	applied to high-level programming.
Course Key Words	Web Platform Development Framework; Test, Models, Views
	Templates & assets; Data delivery HTML, XML, dan JSON
Learning Outcome	Upon successful completion of this course, the students are
	expected to have the following abilities:
	Understand the different concepts, characteristics, and
	implementation mechanisms on various platforms;
	Design and develop applications using various platforms;
	Integrate multiple applications on different platforms;
	Understand Web application Threats.
Course Schedule	Week 1. Introduction to Platform-Based Programming;
	Week 2. Web Platform Development Framework;
	Week 3. Test, Models, Views Templates & assets;
	Week 4. Data delivery HTML, XML, dan JSON;
	Week 5. Form, POST & GET, session, cookie, authentication,
	authorization;
	Week 6. Navigation, layouting, HTML template, CSS, assets;
	Week 7. Client side programming with JQuery;
	Week 8. Mobile platform development framework using Flutter;

	Week 9. User Interfaces;
	Week 10. Mobile application delivery;
	Week 11. Security Aspects on Web Development: Cross Site
	Request Forgery, Cross Site Scripting
Textbooks, References,	Deitel. Internet & World Wide Web How to Program 5th Edition,
and Supplementary Materials	Prentice Hall, 2012.
(Maximum 3)	Dawn Griffiths and David Griffiths. Head First, Android
	Development, A Brain-Friendly Guide, O'Reilly, 2017
Grading Component	- Midterm Exam: 40%
	- Projects: 60%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Programming Foundations 1

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Lim Yohanes Stefanus
Course Structure	Lecture + Lab
Course Credits	4 SKS units
Course Overview	This course aims to teach the fundamental concepts and techniques
	of computer programming as an introduction to computer science.
	This module is taught using a combination of lectures and hands-on
	programming exercises.
Course Key Words	Introduction to computers and programming; Data Types; Control;
	Data Structures and Functions
Learning Outcome	Upon successful completion of this course, the students are
	expected to have the following abilities:
	Explain and correlate fundamental concepts related to
	programming and computer systems;
	• Explain, modify, and analyze variables, data types, and
	number systems;
	Explain and design control mechanisms such as selection
	and repetition;
	Explain and modify character strings (strings);
	Explain and modify text files and handle exceptions;
	Explain and design functions and operate lists;
	• Explain and modify tuples, mutability, sets, and
	dictionaries;
	Explain and design recursive programs;
	Explain and design complex features in classes;
	Explain and implement the basics of Graphical User
	Interfaces (GUIs).

Course Schedule	Week 1. Introduction to computers and programming;
	Week 2. Data Types;
	Week 3. Control;
	Week 4. Data Structures and Functions;
	Week 5. Introduction to object-oriented programming;
	Week 6. Files;
	Week 7. Exceptions;
	Week 8. Recursion;
	Week 9-14. Graphical User Interface (GUI).
Textbooks, References,	W. Punch and R. Enbody, The Practices of Computing using Python.
and Supplementary Materials	3r d Edition
(Maximum 3)	
Grading Component	- Midterm Exam: 25%
	- Final Exam: 35%
	- Assignments/Projects: 40%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Scientific Writing & Research Methodology

Degree	Undergraduate
Department/Study Program	Computer Science
Type of Class	International
Lecturer Name	Dr. Evy Yulianti
Course Structure	Lecture
Course Credits	3 SKS units
Course Overview	This course focuses on methodology for doing research in computer
	science and develops students' scientific and critical thinking. It is
	also intended to enrich students' comprehension of the structure and
	execution of the written academic papers in reporting their research
	results. It involves the understanding of the process of writing, the
	techniques used in writing, and the writing itself. The development
	of writing should be an integrated approach of human-data-
	information-knowledge-tool interaction which may result in a
	sound and readable academic writing.
Course Key Words	Problem identification & Hypothesis, Logical Thinking; Review of
	Literature: compare, contrast, criticize, synthesize, and summarize
	papers
Learning Outcome	Upon successful completion of this course, the students are
	expected to have the following abilities:
	Understand the basic process in conducting research;
	Explore various approaches in doing research;
	Employ scientific methods and critical thinking in research;
	Explore various approaches in developing academic
	writing;
	Conduct a mini research and produce an academic paper
	reporting the research results.
Course Schedule	Week 1. Course Overview;
	Week 2. Introduction to research methodology and A Model of
	Scientific Inquiry;
	Week 3. Problem identification & Hypothesis, Logical Thinking;
	Week 4. Review of Literature: compare, contrast, criticize,

LIST OF COURSES OFFERED TO INTERNATIONAL STUDENTS NON-DEGREE PROGRAM EVEN SEMESTER, ACADEMIC YEAR 2025/2026

Faculty of Computer Science - Universitas Indonesia

	,
	synthesize, and summarize papers;
	Week 5. Scientific Writing: dissertation, thesis, papers, etc;
	Week 6. Writing Research Proposals & Reports; Research Design;
	Week 7. Research Design;
	Week 8. Class presentation;
	Week 9. Class presentation;
	Week 10. Experimental Research in CS, IS, and IT;
	Week 11. Experimental Research in CS, IS, and IT;
	Week 12-14. Survey Research in IT; Data Collection, Data Analysis,
	and Data Presentation.
Textbooks, References,	Sekaran, Uma. "Research Methods for Business: A Skill-
and Supplementary Materials	Building Approach ". 2005
(Maximum 3)	Wilson Jr., E.B. "An Introduction to Scientific Research
	Methods"
	Christensen, Larry B. Experimental methodology, Pearson,
	9th Edition, 2004
	• Tan, Willie. Practical research methods. Singapore:
	Prentice Hall. 2002
	Myers, Michel D. Qualitative Research in Information
	Systems: a reader. Sage pub, 2002
Grading Component	- Quiz: 20%
	- Projects/Assignments: 80%
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).