

Course Name: Advanced Calculus

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	Rendi Kurniawan, Ph.D.
Course Structure	Lecture
Course Credits	2
Course Overview	Upon completing this course, students will be able to use concepts
	from sequences, series, conic sections, and fundamental calculus
	involving functions of two or three variables to solve applied
	problems. The material covered in this course includes: Infinite
	Sequences and Series: Study of infinite sequences and series,
	including convergence tests for positive and alternating series;
	Power Series and Operations: Examination of power series and their
	operations, including Taylor and Maclaurin series; Conic Sections:
	Analysis of conic sections and their properties; Calculus in Polar
	Coordinates: Application of calculus concepts in polar coordinates;
	Differentiation, Limits, and Continuity: Understanding of
	differentiation, limits, and continuity for functions of multiple
	variables, including directional derivatives and gradients; Chain
	Rule: Application of the chain rule for multivariable functions;
	Tangent Planes and Surface Approximation: Study of tangent planes
	and surface approximation; Lagrange Multipliers: Use of Lagrange
	multipliers for optimization problems; Double and Triple Integrals:
	Computation of double integrals in Cartesian and polar coordinates,
	and triple integrals in Cartesian, cylindrical, and spherical
	coordinates; Applications of Multiple Integrals: Application of
	double and triple integrals to solve real-world problems.
Course Key Words	
Learning Outcome	Students can use the concepts of sequences, series, conic sections,
	and the basic concepts of calculus which involve the function of two
	or three variables to solve their applied problems.

Course Schedule	Infinite sequences and infinite series, Test for convergence of
	positive series and alternating series, Power series and operation on
	operations, Taylor and MacLaurin series, Conic sections, Calculus
	in polar coordinates, Derivatives, limits, and continuity of
	multivariables functions, Directional derivatives and gradients,
	Chain Rule, Tangent planes and Approximations, Lagrange
	multipliers. Double integrals in Cartesian coordinates and polar
	coordinates, triple integrals in Cartesian coordinates, cylindrical
	coordinates and spherical coordinates, Applications of double and
	triple Integral.
Textbooks, References,	1. D. Varberg, E. J. Purcell, S.E. Rigdon, Calculus, 9th ed.,
and Supplementary Materials	PEARSON, Prentice Hall, 2007.
(Maximum 3)	2. Thomas, Calculus Thirteenth Edition Volume 2, Erlangga,
	2019.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Solid Mechanics 1

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Jos Istiyanto, S.T., M.T., Ph.D.
	- Rendi Kurniawan, Ph.D.
	- Dr.Eng. Gerry Liston Putra, S.T., M.T.
Course Structure	Lecture
Course Credits	2
Course Overview	Solid Mechanics 1 relates to the loads acting on statically structured
	systems that represent specific operational conditions. Therefore,
	the learning outcomes of the statics of structures course are for
	students to be able to systematically and comprehensively calculate
	static loads on various types of structures based on fundamental
	mechanics principles using mathematical approaches. These
	outcomes include explaining the fundamentals of mechanics, which
	encompass forces, actions, reactions, and internal forces in various
	static structures. This involves calculations and diagrams of internal
	forces and influence lines of specific static structures caused by the
	movement of loads along the structure. Active learning methods
	such as small group discussions, cooperative learning, and
	contextual instruction are employed. Upon completion of this
	course, students are expected to apply their knowledge of structural
	statics in mechanical design, design tasks, and experiments for their
	final research projects.
Course Key Words	
Learning Outcome	Understanding the concepts of force and force equilibrium in
	various constructions, enabling the calculation and analysis of
	structural equilibrium based on the principles of force equilibrium
	in structures, frames, and bar frame constructions.

Course Schedule	Basic principle of engineering statics/Newton Law; Arrangement and decomposition of force in plane and space; Static equilibrium law; Support and support reaction; Frame construction.
Textbooks, References, and Supplementary Materials (Maximum 3)	 Beer, Ferdinand P, Mechanics for Engineers: STATICS, McGrawHill. Hibbeler RC, Mechanics of Materials, 10th ed., Prentice Hall, 2016. Riley, F William, Engineering mechanics: STATICS, John wiley & sons Hamrock, Fundamental of Machine Element, Mc Graw Hill. Shigley, Joseph Edward, Mechanical Engineering Design, McGrawHill.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	 Participate actively in discussions and learning activities. Maintain respectful behavior toward instructors and peers. Avoid any form of academic dishonesty (e.g., plagiarism, cheating).

Course Name: Mechanical Modelling and Visualization

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Muhammad Agung Santoso, S.T., M.T., Ph.D.
	- Dr.Eng. Arnas, S.T., M.T.
Course Structure	Lecture
Course Credits	2
Course Overview	After completing this course, students will be able to design machine elements in the form of technical drawings according to applicable engineering drawing standards, using conventional or modern engineering methods, skills, and tools. The learning method predominantly involves synchronous online learning to accommodate interactive discussions between facilitators and students, interactive tutorials, and small group discussions and presentations. Following synchronous lecture sessions, students are assigned individual or group asynchronous tasks to gauge their understanding.
Course Key Words	5
Learning Outcome	After completing this course, students will be able to design machine elements in the form of technical drawings according to applicable engineering drawing standards, using conventional or modern engineering methods, skills, and tools.
Course Schedule	Introduction to Graphic Communication in Engineering; Sketching; Visualization; Solid Modelling; Assembly Modelling; Autodesk Inventor
Textbooks, References, and Supplementary Materials (Maximum 3)	 Dennis Lieu, Sheryl Sorby - Visualization, Modeling, and Graphics for Engineering Design-Delmar Cengage Learning (2008) Curtis Waguespack - Mastering Autodesk Inventor 2015

	and Autodesk Inventor LT 2015_ Autodesk Official Press Sybex (2014) 3. American Society of Mechanical Engineers - Dimensioning and tolerancing
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Measurement and Metrology

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Agung Shamsuddin Saragih, S.T., M.S.Eng. , Ph.D.
	- Prof. Sugeng Supriadi, S.T., M.S.Eng., Ph.D.
Course Structure	Lecture
Course Credits	2
Course Overview	This module covers the concepts of metrology and measurement in
	industry, as well as the use of metrology and its instruments. The
	focus of this course is on its relevance to the manufacturing industry.
	The course will equip students with the ability to understand both
	the theory and application of metrology and engineering
	measurement in the field of mechanical engineering.
Course Key Words	
Learning Outcome	Understanding how to measure, what can be directly
	measured.
	Being able to design methods (approaches) to measure what
	cannot be directly measured. This involves using
	measurement techniques that adhere to fundamental
	principles to maintain quality and achieve maximum
	benefit from the measurement results.
Course Schedule	Basic Concepts of Measurement and Metrology; Measurement
	Terminology and Systems; Industrial Measurement Terminology
	and Systems; Measurement of Temperature, Pressure, Flow, Force,
	and Stress; Data Acquisition Techniques; Motion Measurement:
	Position, Speed, Vibration, and Acceleration; Types of
	Sensors/Transducers; Transfer Function, FFT & Filtering;
	Uncertainty Analysis; Calibration; Geometric & Dimensional
	Measurement: Definitions, Spatial Dimensions, Metrology (Length
	Measurement); Surface Texture; Roughness & Roundness; Flatness
	& Straightness; Angle Measurement; Basics of CMM (Coordinate
	Measuring Machines).

Textbooks, References,	1. Raghavendra, N. V., and L. Krishnamurthy., Engineering
and Supplementary Materials	Metrology and Measurements., 2013.
(Maximum 3)	2. Wahyudin P. Syam., Metrologi Manufaktur: Pengukuran
	dan analisa dimensi dan geometri., 2017.
	3. Wahyudin P. Syam., Toleransi Dimensi dan Geometri:
	Analisis rantai variasi dalam proses perakitan produk.,
	2019.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Life Science for Engineer

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Prof. Dr. Yudan Whulanza, S.T., M.Sc.
	- Prof. Sugeng Supriadi, S.T., M.S.Eng., Ph.D.
Course Structure	Lecture
Course Credits	2
Course Overview	This course helps students to understand the basics of life sciences,
	especially with the arrival of the cybion era: cybernetic-biology-
	ontology, there are many biological applications that intersect with
	engineering/engineering sciences. With this foundation, it is also
	hoped that students will be able to explain biological considerations
	in mechanical design and the relationship between life sciences and
	sciences in the scientific discipline of mechanical engineering. The
	main topics discussed in this course include biological aspects in
	humans including cell theory and molecular biology, understanding
	movement systems (neuromusculoskeletal: nervemuscle-bone) and
	aspects of biological applications in human life, for example
	biomimetics, bio-inspired design, biomaterials, biomechanics and
	basic principles of medical device design.
Course Key Words	
Learning Outcome	Students can explain basic biological definitions, types and
	anatomy of cell theory and the basics of molecular biology.
	Students can provide illustrations of the relationships
	between networks in a human body function system
	(locomotor function).
	Students can apply various life science phenomena in
	various aspects of mechanical engineering design products.
Course Schedule	Introduction to cell, chemical aspect in biology: acid, carbohydrate,
	lipid, protein, nucleate acid; bioenergy and metabolism: aerobic and
	anaerobic respiration, photosynthesis; animal control system,
	thermoregulation and homeostasis; biomechanics, animal

Faculty of Engineering - Universitas Indonesia

	locomotion, scale effect; food and farm; environmental
	conservation, air, water, life science consideration in mechanical
	design.
Textbooks, References,	1. Alexander, R. McNeill. Principles of animal locomotion.
and Supplementary Materials	Princeton University Press, 2003.
(Maximum 3)	2. Karp, G. Cell and Molecular Biology, 5th ed., John Wiley
	and Sons, Inc.
	3. Berger, S. et al. Introduction to Bioengineering, Oxford
	University Press
	4. Cunningham, William P., and Mary Ann Cunningham.
	Principles of environmental science: inquiry &
	applications. McGraw-Hill, 2011.

Grading Component

(i.e. Expectations on Classroom Conduct and Decorum etc.)

Other

Students are expected to:

- Attend all classes regularly and on time.

systems biology. CRC Press, 2011.

- Participate actively in discussions and learning activities.
- Maintain respectful behavior toward instructors and peers.
- Avoid any form of academic dishonesty (e.g., plagiarism, cheating).

5. Cosentino, Carlo, and Declan Bates. Feedback control in

Course Name: Kinematics and Dynamics

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Dr.Eng. Radon Dhelika, B.Eng., M.Eng.
	- Prof. Dr. Ir. Wahyu Nirbito, MSME
Course Structure	Lecture
Course Credits	4
Course Overview	The Kinematics and Dynamics course is a course that provides the
	foundation for understanding aspects of motion and energy of
	moving mechanical systems. It is hoped that after taking this course,
	students will apply the concepts of kinematics and dynamics and
	apply them to problems involving moving mechanical systems. The
	discussion in this course is through two approaches, namely the
	concepts of kinematics and dynamics in particles and in rigid
	bodies.
Course Key Words	
Learning Outcome	Students can understand the key concept of kinematics and
	dynamics of mechanical system and are capable to analyze the
	movement, velocity, acceleration force and equilibrium.
Course Schedule	Vector velocity analysis, free body diagram, linier motion, velocity
	polygon, 2D motion, rectangular coordinates, N-T and pole, relative
	motion and velocity of 2 coincide/relate point, Coriolis acceleration
	and stiff body kinematics, Inertia Force, Statics, particle system,
	works, energy, impulses, linear-angular.
Textbooks, References,	1. Meriam & Kraige, Engineering Mechanics. 7th ed, Wiley
and Supplementary Materials	New York. 2012.
(Maximum 3)	2. Holowenko, Dynamics of Machinery, John Wiley, 1995.
	3. Beer & Johnston, Mechanics for Engineer, Dynamics, 11th
	ed. Dynamics, Mc Graw-Hill, 2015.
Grading Component	-
Other	Students are expected to:

(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Numerical Method

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Dr.Eng. Sholahudin, S.T., M.Sc.
	- Prof. Dr. Ir. Engkos Achmad Kosasih, M.T.
Course Structure	Lecture
Course Credits	3
Course Overview	Numerical methods are a branch of applied mathematics that studies
	various methods and techniques in solving mathematical problems
	formulated so they can be solved using arithmetic operations.
	Solving mathematical problems with arithmetic operations can be
	solved effectively by using a computer as a calculating tool.
	Therefore, learning Numerical Methods is closely related to
	programming calculation algorithms on computers to complete
	arithmetic calculations quickly and efficiently. After attending this
	lecture, students will be able to solve various mathematical
	problems, especially problems that are difficult to solve using
	analytical methods, by applying numerical methods and techniques
	implemented in computer programming. The learning process
	applied is an active learning process. Students will also go straight.
	The achievement of this course is to produce technical experts who
	can produce cheap and efficient analysis and design results as a
	substitute/complement to experimental studies and physical
	modeling.
Course Key Words	
Learning Outcome	The objective of this course is that the student can understand and
	able to apply the process and method (algorithm) of engineering
	numerical method in computer-based computation and to
	understand the parameters that influence the speed and accuracy of
	calculation.

Course Schedule	Introduction to numerical method and programming: simple
	mathematical modeling, programming and software, structural
	programming, modular programming, iterative method; Function:
	function and function value, Taylor and Maclaurin series,
	approximation and error; Root of equation: graphical method,
	Bisection method, False-Position method, Newton – Raphson
	method, Secant method, Bairstow method; Linear algebra equation
	system: Gauss elimination, Gauss-Jordan elimination,
	Decomposition and transformed matrices; Curve – Fitting: Least –
	Square regression, Interpolation; Numerical Integral: Trapezoid
	method, Simpson method, Double Integral; Differential equation:
	Finite Divided Difference, Euler method, Runge – Kutta method;
	Ordinary Diffrential Equation System.
Textbooks, References,	1. Chapra, Steven C. and Canale, Raymond P. Numerical
and Supplementary Materials	Methods for Engineers 6th edition. New York: McGraw-
(Maximum 3)	Hill, 2010.
	2. Kreyszig, Erwin. Advanced Engineering Mathematics 10th
	edition. Danvers: John Wiley & Sons, 2011.
	3. Sedgewick R., Phillippe F, An Introduction to the Analysis
	of Algorithms, Addison Wesley.
	4. Cheney W., Kincaid D., Numerical Mathematics and
	Computing, Cole Publishing.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Basic Fluid Mechanics

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Prof. Dr. Ir. Harinaldi, M.Eng.
	- DrIng. Ridho Irwansyah, S.T., M.T.
Course Structure	Lecture
Course Credits	4
Course Overview	Fluid mechanics are one of the applied mechanical science branches
	that will be used to investigate, analyze, and learn the nature and the
	behavior of fluids. Fluid that will be explored could be a moving or
	stationary fluid. Fluid Mechanics course intends to complement the
	ability of a student to be able to apply the basic laws of fluid
	mechanics in practical engineering calculations of fluid mechanics
	and be able to analyze the behavior of the fluid and developing
	knowledge in the field of fluid mechanics.
Course Key Words	
Learning Outcome	After completing this course students understand the physical
	properties of fluids, are able to apply the laws and concepts of fluid
	mechanics in calculating practical fluid mechanics designs and are
	able to analyze fluid behavior.
Course Schedule	Fluid and its nature, fluid statics, the relative balance, concept and
	basic equations of fluid flow, dynamic of flow, the equation of fluid
	motion (Newton, Euler, Navier stokes), Basic Equation of Fluid
	Dynamics (Continuity, Energy and momentum), dimensional
	analysist and hydraulic similarity, ideal fluid flow, viscous flow,
	viscous flow: transition from laminar into turbulent flow, fully
	developed turbulent flow, flow around submerged objects, general
	characteristic of outside flow, concept and characteristic of layer in
	closed flow, measurement and visualization of flow, pressure
	measurement concept, flow and capacity, flow measurement
	devices (Pitot tube, Venturi, orifice, Nozzle, HWA, LDV), Flow
	visualization method.

Textbooks, References,	1. Munson, B.R., Fundamentals of Fluid Mecha-nics 7 th Ed,
and Supplementary Materials	John Wiley & Sons, Inc. 2012
(Maximum 3)	2. Smits, A.J., A, Physical Introduction to Fluid Mechanics,
	John Wiley & Sons, Inc. 2000.
	3. Kumar, SCPL.L., Engineering Fluid Mechanics, Eurasia
	Publishing House Ltd., 2010.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Mechanical Design

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Jos Istiyanto, S.T., M.T., Ph.D.
	- Prof. Sugeng Supriadi, S.T., M.S.Eng., Ph.D.
Course Structure	Lecture
Course Credits	4
Course Overview	This course gives an understanding of the application of engineering
	mechanic science and material strength in machine elements. After
	completion in this course, the students have the basic competence
	to design the machine element.
Course Key Words	
Learning Outcome	After completing this course, students are able to decide, and study
	the design theory of various machine elements, as well as carry out
	calculations and analyzes regarding phenomena that occur in
	various machine elements, and can choose machine elements that
	are suitable for use.
Course Schedule	Basic mechanical design review, design of joint: welding, solder,
	adhesive bonding, rivet, pin, bolt, nut, thread, axel, shaft, hub, roller
	& ball bearing, lubrication, wear and friction, spring, break, fixed
	and unfixed clutch, chain, belt, basic of gear, straight & tilt bearing,
	Final Assignment: Design process consist of the understanding of
	purpose, load and calculation of machine element.
Textbooks, References,	1. Hamrock, Fundamental of Machine Element, 3rd ed, CRC
and Supplementary Materials	Press, 2013.
(Maximum 3)	2. Shigley, Joseph Edward, Mechanical Engineering Design,
	10th ed, McGraw-Hill., 2014.
	3. Sularso, Dasar Perencanaan & Pemilihan Elemen Mesin,
	Pradnya Paramita, 1994.
	4. Hibbeler RC, Mechanics of Materials, 10th ed., Prentice
	Hall, 2016.
	5. Riley, F William, Engineering Mechanics: STATICS, John

	wiley & sons.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Heat and Mass Transfer

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Prof. Dr. Ir. Imansyah Ibnu Hakim, M.Eng.
	- Prof. DrIng. Ir Nandy Setiadi Djaya Putra
Course Structure	Lecture
Course Credits	4
Course Overview	This course studies the mechanisms of heat and mass transfer in a
	control volume due to temperature differences and is closely related
	to basic thermodynamics. The goal of this course is for students to
	understand various mechanisms of energy, heat, and mass transfer
	between two systems when there is a temperature difference and to
	be able to calculate the rate of heat transfer. Students should also be
	able to solve various heat and mass transfer problems using
	dimensionless parameters.
Course Key Words	
Learning Outcome	Students can understand several heat and mass transfer
	mechanisms between two systems.
	• Students can calculate the heat transfer rate if the
	temperature gradient occurs.
	Students can solve various heat and mass transfer problems
	using dimensionless parameters.
Course Schedule	Fundamental of heat transfer, conduction heat transfer (1
	dimensional and 2 dimensional), numerical analysis in conduction
	heat transfer/unsteady state, forced convection heat transfer, free
	convection heat transfer, boiling and condensation, heat exchanger,
	radiation, fundamental of mass transfer, steady state molecule
	diffusion, unsteady state molecular diffusion, convection mass
	transfer, convection mass transfer correlation, mass transfer
	apparatus.
Textbooks, References,	1. Frank P Incropere, David P De Witt, Fundamental heat and
and Supplementary Materials	mass transfer, 7th Ed., Wiley, 2011, New York.

(Maximum 3)	2. Holman JP, Heat Transfer, 10th ed, Mc Graw-Hill, 2009.
	3. Welty R James, Wicks Charless, Wilson Robert,
	Fundamentals of Momentum, Heat, and Mass Transfer, 6th
	Ed. Wiley, 2014.
	4. Cengel, Yunus, Heat Transfer a Practical Approach, 2nd Ed.
	Mc Graw Hill, 2003, Singapore.
	5. Kreith Frank, Bohn Mark, Principles of Heat Transfer, 7th
	Ed. CL Engineering, 2010.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Business, Entrepreneurship, and Project Management

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Agung Shamsuddin Saragih, S.T., M.S.Eng. , Ph.D.
	- Ir. Ardiyansyah, S.T., M.Eng., Ph.D.
Course Structure	Lecture
Course Credits	4
Course Overview	This course is designed to provide students with the knowledge and
	skills needed to launch and manage successful entrepreneurial
	ventures. It covers the entire entrepreneurial process, from
	identifying opportunities and developing business plans to securing
	financing and managing growth. Students will engage with real-
	world case studies, participate in interactive discussions, and
	develop their own business ideas.
Course Key Words	
Learning Outcome	Upon successful completion of this course, students will be able to
	create viable business plans, understand market dynamics, secure
	funding, and manage entrepreneurial ventures effectively.
Course Schedule	Introduction to entrepreneurship; opportunity recognition and idea
	generation; business models and value proposition; market research
	and analysis; business plan development; funding and financial
	management; marketing and sales strategies; growth and scalability;
	leadership and team dynamics; legal and ethical issues in
	entrepreneurship.
Textbooks, References,	1. Eric Ries,"The lean startup: How today's entrepreneurs use
and Supplementary Materials	continuous innovation to create radically successful
(Maximum 3)	businesses".
	2. Peter Thiel and Blake Masters, "Zero to one: Notes on
	startups, or how to build the future".
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.

Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

Course Name: Sustainable Energy Conversion System

Degree	Bachelor
Department/Study Program	Mechanical Engineering
Type of Class	International
Lecturer Name	- Prof. Dr. Ir. Ahmad Indra Siswantara
	- Ir. Ardiyansyah, S.T., M.Eng., Ph.D.
Course Structure	Lecture
Course Credits	4
Course Overview	The course Sustainable Energy Conversion Systems covers energy sources, types and classifications of energy, energy conversion, energy consumption, basic concepts of energy conversion systems, resources and classifications of energy conversion machines, including practical sessions on the performance of energy conversion machines. The goal of the course is for students to understand energy resources, classify various types of energy conversion machines, grasp the basic concepts of energy conversion, energy systems, and energy conservation, as well as perform basic calculations of the performance of various types of energy conversion machines and make critical considerations
C V W 1	regarding energy conservation.
Course Key Words Learning Outcome	 The ability to design, plan, execute, and evaluate tasks in energy conversion systems. The ability to analyze components, systems, and/ or thermo-fluid processes and mechanical systems to meet expected needs within realistic constraints, such as legal, economic, environmental, social, political, health and safety, and sustainability considerations, as well as recognizing and/or leveraging the potential of local and national resources with a global perspective. The ability to conduct experiments, gather information, analyze data, and report experimental results by applying statistical principles in practical sessions, including

	observations of compressors, Pelton turbines, heat pumps,
	refrigeration training units, diesel engines, Otto engines,
	and centrifugal pumps.
Course Schedule	Definition of energy and energy resources, type and energy
	classification; law and equation in energy conversion; energy
	profile (resources, reserves and the world's and Indonesia's energy
	needs); basic concept of energy conversion system; power resources
	and classification of energy conversion engine; fuel in energy
	conversion; renewable energy; non-renewable energy;
	classification of combustion engine; calculation for internal
	combustion engine performance; steam power plant; fluid
	machinery; cooling engine classification; thermodynamics cycle of
	cooling engine; energy conversion method in vehicle; industry and
	building.
Textbooks, References,	1. Kreith, F, Goswami, DY, Energy Conversion (Mechanical
and Supplementary Materials	Engineering), CNC Press, 2007
(Maximum 3)	2. Kreith, F, Goswami, DY, Energy management and
	Conservation Handbook, CNC Press, 2007
	3. Patrick, D.R., et.al, Energy Conservation Guidebook, 3rd
	ed. Fairmont Press 2014
	4. Dincer, I., Rosen, Thermal Energy Storage: Systems and
	Applications 2nd ed, Wiley, 2010.
Grading Component	-
Other	Students are expected to:
(i.e. Expectations on Classroom	- Attend all classes regularly and on time.
Conduct and Decorum etc.)	- Participate actively in discussions and learning activities.
	- Maintain respectful behavior toward instructors and peers.
	- Avoid any form of academic dishonesty (e.g., plagiarism,
	cheating).

^{*} Note: Please add additional sheets for the next course